
NASA Technical Paper 3452
Volume 3

HiRel: Hybrid Automated Reliability Predictor
(HARP) Integrated Reliability Tool System
(Version 7.0)

HARP Graphics Oriented (GO) Input User’s Guide

Salvatore J. Bavuso, Elizabeth Rothmann, Nitin Mittal, and Sandra Howell Koppen

November 1994



NASA Technical Paper 3452
Volume 3

HiRel: Hybrid Automated Reliability Predictor
(HARP) Integrated Reliability Tool System
(Version 7.0)

HARP Graphics Oriented (GO) Input User’s Guide

Salvatore J. Bavuso
Langley Research Center � Hampton, Virginia

Elizabeth Rothmann and Nitin Mittal
Duke University � Durham, North Carolina

Sandra Howell Koppen
Lockheed Engineering & Sciences Company � Hampton, Virginia

National Aeronautics and Space Administration
Langley Research Center � Hampton, Virginia 23681-0001

November 1994



This publication is available from the following sources:

NASA Center for AeroSpace Information National Technical Information Service (NTIS)

800 Elkridge Landing Road 5285 Port Royal Road

LinthicumHeights, MD 21090-2934 Spring�eld, VA 22161-2171

(301) 621-0390 (703) 487-4650



Contents

Chapter 1|Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2|Program Initiation and Example Session . . . . . . . . . . . . . . . 3

2.1. Scrolls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2. Example Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1. Model Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2. Sample Session . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 3|Graphics Primitives . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1. Markov Chain Primitives . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1. Circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.2. Clockwise and Counterclockwise Arc . . . . . . . . . . . . . . . . . . 9

3.1.3. Arrow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2. Fault Tree Primitives . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1. Circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.2. Double Circle . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.3. or Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.4. xor Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.5. not Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.6. and Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.7. m/n Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.8. Functional Dependency Gate . . . . . . . . . . . . . . . . . . . . 12

3.2.9. Priority and Gate . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.10. Cold Spare Gate . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.11. Sequence-Enforcing Gate . . . . . . . . . . . . . . . . . . . . . 13

3.2.12. Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.13. Failure Box . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.14. Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Chapter 4|Function Keys . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1. HELP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2. LOAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3. DRAW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.4. DICT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.5. LABEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.6. SAVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.7. QUIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.8. COPY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.9. DEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.10. ERASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.11. GRID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.12. MOVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

iii



4.13. REDRW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.14. SCALE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.15. VIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Chapter 5|Output Files . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Appendix|Hardware and Software Con�gurations . . . . . . . . . . . . . . . 29

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

iv



Chapter 1

Introduction

The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) work-

station tool system marks another accomplishment toward the goal of producing a totally

integrated computer-aided design (CAD) workstation design capability (ref. 1). Since a reliability

engineer must generally graphically represent a reliability model before solving it, the use of a

graphical input description language increases productivity and decreases the incidence of error.

The captured image displayed on a cathode-ray tube (CRT) screen serves as a documented

copy of the model and provides the data for automatic input to the HARP reliability model

solver. The introduction of dependency gates to fault tree notation allows large fault-tolerant

system models to be modeled with a concise and visually recognizable and familiar graphical

language. In addition to aiding in the veri�cation of the reliability model, the concise graphical

representation presents company management, regulatory agencies, and customers a means of

expressing a complex model that is readily understandable.

The HARP program (ref. 2) consists of three main software programs that constitute a

workstation capability: the graphics oriented (GO) program (ref. 3), the textual HARP program

typically referred to as HARP or textual HARP, and the HARP Output (HARPO) program.

All these programs execute on a VAX under VMS, SUN under UNIX, and IBM-compatible

286, 386, and 486 PC's under DOS. Textual HARP also executes under OS/2. The graphical

input and output programs require the Graphical Kernal System (GKS) support modules with C

and FORTRAN compilers, while textual HARP only requires an ANSI standard FORTRAN 77

compiler. All three programs are stand-alone programs that operate on compatible �les. For

example, �les created under the PC environment can be executed by a VAX. In this way, a

PC can be used as a workstation for input and output processing, while a VAX or some other

workstation can be used for large computations.

Textual HARP when used as a stand-alone capability is compatible with a wide range of

computing platforms because it was written in ANSI standard FORTRAN 77 for wide portability.

Textual HARP has an interactive prompting input capability and is composed of three stand-

alone programs: tdrive, �face, and harpeng. As the user successively executes the programs

in this order, �les are created that are required by downstream programs. The programs also

accept user-generated �les created with a text editor. Thus, the user has the option to use the

interactive capability or simply input the user-generated �les.

The input to tdrive can also come from �les generated by GO. The output of textual HARP

is in the format of tabular structured �les. These �les can be used by HARPO to display the

HARP tabular data in a wide variety of forms in an interactive mode.

The HARP Graphics Oriented (GO) program is the graphical user interface (GUI) to the

HARP (ref. 2) program which is a member of the HiRel tool system. (See vols. 1 and 2 of this

TP.) The GO program creates all required �les that describe the user's reliability/availability

models and provides an alternate input format to HARP's textual input language. The ASCII

�les can be modi�ed with a text editor for additional exibility. Before using the GO program,

the user should understand the following HARP concepts: the fault-occurrence=repair model

(FORM), fault=error handling model (FEHM), and the function of the HARP dictionary.

The GO program supports the creation of Markov chain models in two notations: directly

as a Markov chain and indirectly as a fault tree. When a model is described as a fault tree, the



program tdrive automatically converts the fault tree to its equivalent Markov chain for solution.
A Markov chain is solved directly if no FEHM's are speci�ed; otherwise, for both notations the

model's Markov chain is automatically altered to include the e�ects of user-speci�ed fault/error

handling. The model that is eventually solved by HARP is always a Markov chain.

The choice of which modeling language to use depends on several factors, such as the size of

the model, the user's familiarity with a particular notation, and the degree of modeling detail

desired. These factors are highly user dependent; however, for all but the most simple models

(less than 50 states), the fault tree notation is by far the easiest to describe and comprehend.

An important limitation of the fault tree notation is its inability to model systems with repair;

however, there is no limitation for Markov chains. Thus, describing a repair model as a fault

tree initially to automatically create its Markov chain may be possible. With a text editor, the

*.int �le can be subsequently altered to reect the required repair transitions and repair rates.

Direct input of a Markov chain will appropriately model systems with repair.

This document describes the GO program. Chapter 2 provides information on how to run

the graphics program and gives an example session. Chapter 3 provides details about fault tree

and Markov chain icons available for modeling, and chapter 4 describes the use for each function

key. Chapter 5 gives detailed information about the output �les GO created for input HARP.

The appendix describes the hardware and software requirements for each computing platform.

2



Chapter 2

ProgramInitiationandExample
Session

The initiation of the GO program may di�er slightly on each computing platform. On a

Sun Microsystems Sun 3 workstation, the Sunview environment must be invoked �rst. GO also

executes on Sun 4 workstations under Sun OpenWindows. DEC VAX workstations also require

a window environment.

On an IBM-compatible PC, if the GO program is in the path statement in autoexec.bat,

typing go at the C prompt invokes the fault tree menus and gom invokes the Markov chain

menus. The appendix provides the details.

To initiate the program on a Sun or VAX workstation, type the word go on your terminal,

which gives you the default FORM of a fault tree. (You can also type go f.) If you want to
create a Markov chain, type go m. (See appendix for parameter passing under the software

requirements section.) You cannot switch back and forth between the two FORM types during

program execution.

Your workstation requires a few seconds to set up the menus and screen. The �rst screen

that appears is the credits screen. Pressing the left mouse button clears the screen for model

entry. Your screen should then look like �gure 1.

MESSAGES GO HERE

Fault tree
or

Markov chain
primitive menu
(see chapter 5)

QUIT HELP SCALE

LABEL SAVE LOAD

DICT COPY VIEW

DRAW DEL GRID

ERASE REDRW MOVE

Figure 1. Initial drawing screen.

The drawing window is the large square to the left of the screen. In the middle of each edge of

the drawing window is a small box with an arrow key. These SCROLL boxes allow you to scroll

the picture up, down, left, or right. Directly below the drawing window is the message window

3



Scroll up

Scroll down

Fault tree
or

Markov chain
primitive menu
(see chapter 5)

Scroll left Scroll right

MESSAGES GO HERE

QUIT HELP SCALE

LABEL SAVE LOAD

DICT COPY VIEW

DRAW DEL GRID

ERASE REDRW MOVE

Figure 2. Screen scrolling buttons.

(MESSAGES GO HERE). User information, instructions, warnings, or error messages are displayed
here. To the right of the drawing window is the menu area that includes the menu icons and
the graphic primitive icons. The 15 menu icons shown have various function names, that is,
QUIT, HELP, SCALE, etc. These menu icons are referenced herein as function keys. When the
instructions call for you to use a particular function key, you should move the cursor over that
icon with the mouse and press and release the left button on the mouse (tagging and dragging
are not implemented). The graphic primitive icons are located below the function keys. If the
FORM is a fault tree, there are eight function keys. If the FORM is a Markov Chain, there are
four function keys. These icons are discussed in chapter 4.

The cursor is centered in the drawing window. Use the mouse to move the cursor in the
direction desired. To make a selection, press the left mouse button while the cursor is over the
selected area.

Keyboard input is not case sensitive, even though GO prompts may indicate otherwise. GO
generated �lenames are always uppercase but can be input as lowercase. GO executing on a
Sun requires the user to select the keyboard input panel with the left mouse button. The panel
is located below the message window.

2.1. Scrolls

The scroll buttons are located along each side of the main drawing window. (See �g. 2.)
Anytime you want to scroll to a di�erent screen, either to create a model or to view it, move
the cursor over the correct box and press and release the left mouse button. To scroll a quarter
screen, press and release the mouse button once. A number is written in the appropriate box
representing the number of whole screens that have been scrolled in that direction. This scheme

4



makes returning to the home location easy. For example, if the screen has been moved two
screens to the right, returning to home can be accomplished by pressing and releasing the mouse

button eight times in quick succession.

2.2. Example Session

2.2.1. Model Input

To input a model in the GO program, perform the following steps:

1. Invoke GO by entering go or go f for inputting fault trees or go m for Markov chains. On a

PC, the parameter f or m must be passed to the GO program. You must use a batch �le,

for example, go.bat or gom.bat, to pass the parameters to pcgo.exe and to invoke the GKS

drivers. (See appendix under the section for PC software requirements.)

2. Clear the credits screen by pressing and releasing the left mouse button.

3. At any time when the menu is displayed, selecting HELP with the mouse displays context

sensitive information. Menus are selected by moving the mouse to place the cursor over the

menu item and pressing and releasing the left mouse button. To get help on drawing, select

HELP then select DRAW from the menu. Selecting HELP then QUIT terminates help.

4. If this is an initial session, begin by selecting DRAW from the menu with the mouse (see

chapter 4 for options). If this is a continuation of a previous session, then select LOAD from

the menu.

5. After the primitives are displayed and before labeling the graph begins, you must create a

dictionary �le if the model is a fault tree. You can create this �le by selecting DICT. If

the model is a Markov chain without FEHM's (AS IS model) no dictionary is required. If

FEHM's are used, a dictionary is required.

6. Before labeling can begin, you must save the model by selecting SAVE. Labeling can then

proceed.

7. On completion of the model drawing, once again save the model before selecting QUIT. The

session ends when QUIT is invoked.

8. Processing of the model data continues by executing tdrive unless an AS IS Markov chain is

drawn. In this latter case, �face is executed directly after GO termination. The programs

tdrive or �face prompt you to read existing �les. Then, tdrive or �face reads the �les that

GO created. These �les (*.FTR and *.DIC for fault trees and *.MKV for Markov chains)

must be available to tdrive or �face for reading. Processing now proceeds identically to that

of textual HARP. (See vol. 2 of this TP.)

2.2.2. Sample Session

After the credits screen is cleared (press the left mouse button), one of two screen images are

displayed. Figure 1 appears if go or go f was invoked or �gure 3 appears with a blank drawing

window if go m was invoked. Since the more practical use of HiRel uses the fault tree notation,

this session concentrates on its use. Markov chains are easier to draw than fault trees, but they

become very large and untractable for most practical systems.

You can now select the context sensitive HELP screens by pointing the mouse cursor at

HELP and pressing and releasing the left mouse button followed by selecting the function key

of interest, for example, DRAW. Help is terminated by selecting QUIT. The purpose and use of

5



MESSAGES GO HERE

QUIT HELP SCALE

LABEL SAVE LOAD

DICT COPY VIEW

DRAW DEL GRID

c-clockwise

counter
clockwise
arc

clockwise
arc

circle

arrow

ERASE REDRW MOVE

3,2
3*LAMBDA

3,1

2,2
2*LAMBDA

LAMBDA

2*MU2*MU2*MU

MU MUMU

2,1

F2

1,2

F1

1,1
3*LAMBDA 2*LAMBDA

clockwise

LAMBDA

Figure 3. Markov chain primitive menu.

MESSAGES GO HERE

QUIT HELP SCALE

LABEL SAVE LOAD

DICT

FBOX

COPY VIEW

DRAW DEL GRID

or gate

double
circle

circle

m/n gate

ERASE REDRW MOVE

and gate

First
primitive
menubox

line

failure
box

FBOX

m/n

3*1 2*2

Figure 4. Default fault tree primitive menu.

6



all function keys except DRAW is straightforward. To demonstrate the drawing function, begin

by selecting DRAW after terminating help.

The DRAW function key is now surrounded by a red border designating the selected function.

Next point to the the function key to be placed on the screen. Figure 4 shows the fault tree that

is currently being described. The order of selecting and placing the function keys is arbitrary

with one exception, the line. Lines should be drawn last. To place the FBOX, place the cursor

in the FBOX function key and press and release the left mouse button. Move the cursor to the

desired position and press and release the left mouse button. The FBOX function key appears

on the screen. Continue this process for all functions required. You need not select DRAW for

each new function key in the primitive menu. The Circle function keys are empty when initially

drawn. To draw lines, select line and select the source, then move the cursor to the destination

and select it. Connect lines from the bottom of the screen upward. Figure 5 shows the second

primitive menu that is obtained by pointing to the primitive menu and pressing and releasing

the right mouse button. This menu is a toggle switch; thus, repeating the operation restores the

initial menu.

MESSAGES GO HERE

QUIT HELP SCALE

LABEL SAVE LOAD

DICT COPY VIEW

DRAW DEL GRID

xor gate

not
gate

circle

functional
dependency

gate

ERASE REDRW MOVE

priority
and gate

Second
primitive
menucold

spare 
gate

line

sequence enforcing gate

SEQ

FDEP

CSP

Figure 5. Second fault tree primitive menu.

The dictionary should be created next by selecting DICT. GO prompts you for the required

information: the names of the system components, a symbolic failure rate name, and a FEHM

model. GO assigns a unique positive integer to each component that is used later during the

labeling of the basic event function keys.

When the dictionary is complete, the model needs to be temporarily saved. Use the SAVE

function key to do that. When specifying the �lename for the model, do not use a �le extension.

GO attaches an appropriate one for you. Now labeling can begin. When LABEL is selected,

7



GO places the dictionary integer associated with each component basic event in a circle function

key. GO asks you for a replication factor, a positive integer. In �gure 4, a replication factor

of 3 was given for component 1 and a replication factor of 2 was given for component 2. Unlike

textual HARP, you do not need to keep track of node numbers. GO does that bookkeeping for

you.

At any time during the drawing operation, GRID, SCALE, SAVE, VIEW, REDRW, DEL,

HELP, COPY, MOVE, and even QUIT or ERASE, can be selected. REDRW is useful for

cleaning up the screen when much editing has been done. ERASE terminates the drawing but

not the session. QUIT does both. In each case, you are warned of your requested action before

it is executed. Typically, SAVE is selected before quitting. QUIT does not save automatically

for you.

When the session is terminated, you should execute the tdrive program to continue the

analysis. Then tdrive prompts you to enter the modelname of the system you drew. The

analysis is now in the HARP environment and stays there until the HARPO program is invoked

after harpeng is executed.

8



Chapter 3

GraphicsPrimitives

3.1. Markov Chain Primitives

Markov chains are stochastic mathematical models that constitute a superset of combinatorial

fault tree models. Markov chains are particularly useful for modeling systems that contain

various dependencies not easily modeled or at all possible with combinatorial fault trees.

In contrast to combinatorial models, the solution of Markov chains is computationally more

expensive. However, for many applications involving fault trees, the additional computer time is

trivial compared with the bene�ts of the fault tree notation. When fault/error handlingmodeling
is required, a Markov chain is often the only reasonable choice. The HiRel capability makes the

choice of selecting a modeling notation much easier because the HARP program converts a fault

tree into a Markov chain even when failure dependencies and fault/error handling are modeled.

(See vol. 1 of this TP.)

Four graphics primitives are used to create a Markov chain: circle (representing a system

state and also called a node), arrow, clockwise arc, and counterclockwise arc (representing state

transitions). The connectors (arcs or arrows) must go from a node to a node. HARP can solve
repairable systems; thus, no restrictions exist on having a connector going from node A to node B

and another going from node B to node A. For clarity on the screen, you should not make both

of these arrows because they will overwrite one another. Use the arcs primitives because they

are curved rather than straight.

3.1.1. Circle

A circle represents a state in the Markov chain. To add (or delete) circles to your model (once

you have used both the DRAW (or DEL) and the CIRCLE function keys), move the cursor to

the desired location in the drawing window and press the left mouse button. When labeling the

states, a parameter of 13 characters containing numerals or characters is allowed. If two nodes

have the identical label, they are considered to be the same state. (This condition applies only

if there are labels. Null states, states without labels, cannot be used in the remainder of the

HARP program.)

3.1.2. Clockwise and Counterclockwise Arc

As the name implies, the clockwise arc is drawn clockwise from the head node to the tail

node. Once the CLOCKWISE ARC function key has been highlighted, you should �rst specify

the tail node from which the arc emanates and then specify the head node to which the arc goes.

To specify a node, move the cursor anywhere within the node and press the left mouse button.

You are given an error message if either node cannot be found. If the desired direction of the

arc is counterclockwise, use the arc function key that shows the arc going in a counterclockwise

direction with the word c-clockwise in the box. The tail node is again designated �rst and the

head node second. However, the arc is drawn in a counterclockwise motion. While arcs look

di�erent on the screen than arrows (arcs are curved and arrows are straight), the arc is not

interpreted any di�erently than the arrow during the run of the HARP engine. Arcs are useful

for modeling repair transitions. Labels of up to 24 characters can be entered with the following

restrictions:

9



1. Only one level of parentheses

2. Only addition and subtraction within parentheses

3. Only addition, subtraction, and multiplication outside parentheses

3.1.3. Arrow

The arrow connects two states in the Markov chain. Like an arc, it must have both a valid
head and tail node to be entered. While it looks di�erent on the screen (it is straight and
arcs are curved), the arrow is not interpreted any di�erently than the arc during the run of
the HARP engine. Arcs are used exclusively for repair transitions. After both the DRAW (or
DEL) function key and the ARROW function key have been speci�ed, designate the tail node
by moving the cursor anywhere within it and press the left mouse button. Then, specify the
head node in the same manner. Labels of up to 24 characters can be entered with the following
restrictions:

1. Only one level of parentheses

2. Only addition and subtraction within parentheses

3. Only addition, subtraction, and multiplication outside parentheses

3.2. Fault Tree Primitives

The following 14 graphics primitives are used by the fault tree GO program: circle, or gate,
and gate, m/n gate, priority and gate, functional dependency gate, cold spare gate, sequence-
enforcing gate, double circle, box, failure box (FBOX), line, xor gate, and not gate. (All
primitives except line are also called nodes.) These primitives are divided into two menus,
as shown in �gures 4 and 5. To view the second primitive menu, click the right mouse button.
This button works as a toggle from one menu to the other.

3.2.1. Circle

The circle represents a basic failure event in the fault tree. It can have no incoming lines.
To add (or delete) circles to your model (once you have enabled the DRAW (or DEL) and
the circle function keys), move the cursor to the desired location in the drawing menu and
press the left mouse button. When labeling the basic events, the dictionary �le must exist.
The label is the number of the corresponding dictionary. For example, if dictionary entry 2
corresponds to actuators and this basic event is an actuator, then the label is 2. HARP allows
the combination of statistically identical components into single basic events. These replicated
basic events are labeled with an expression of the form m � n, representing m replications of
redundant, functionally identical components of type n. Therefore, you are asked how many
components are represented by this particular basic event circle. (See vol. 1 of this TP.)

3.2.2. Double Circle

The double circle function key is used to simplify the graphics display. The double circle
notation is provided for drawing convenience and to simplify the drawing by reducing connecting
arcs. In a model, two or more basic event nodes (circles) of the same component type represent
two or more distinct basic events. To represent a single basic event that is used more than once
in the fault tree (shared event or common mode/cause failure) use the double circle function
key. (See vol. 1 of this TP.) The shared basic event is initially drawn as a single circle. All
other multiple occurring events associated with the initial basic event are then drawn as double

10



circles. The double circles are referenced to the initial single-circle basic event during the labeling
process. When labeling commences, GO �rst prompts (red X) for the labels of all distinct basic
events, if they were drawn �rst. GO then marks the double circle (red X) and prompts for
the single-circle label corresponding to the double circle, etc. If a double circle is drawn before
its corresponding basic event, GO asks whether the basic event was previously de�ned. If the
answer is no and you respond accordingly, GO skips the double circle labeling and allows all
basic events to be labeled. You should then select the LABEL function key to label the double
circles.

When labeling the model, you are asked to identify the basic event node (circle) to which
the double circle corresponds. The *.TRE and *.FTR �les are generated by the GO program
and represent the drawn model. The *.FTR or *.TRE �les are read by program tdrive, which
causes all lines that emanated from the double circle to emanate from the corresponding basic
event. The double circle is removed from the internal data structure after the line connectors
have been switched. This primitive keeps the fault tree neat and easy to follow. When DELETE
and DOUBLE CIRCLE function keys are selected, GO warns you that all connecting arcs will
also be deleted. At some time during the drawing session, a double circle must be associated
with a basic event node. Also, a double circle must not be associated with other double circles.

The same reliability model can be obtained without the use of the double circles and can
be used as a check to insure that the double circle model is correctly drawn. Volume 1 of this
Technical Paper shows an example of a fault tree in �gure 26. This �gure is repeated in the
following sketch. A double circle implementation of the fault tree on the left can be visualized
by observing the fault tree on the right. Node 3 would be drawn as a double circle and hence
would be assigned as node 2 internally by GO. GO would call node 4 node 3, and all following
nodes would have a node value of one less than is depicted. All node numerals are internal to
GO and are not displayed. Only the component type numbers are displayed in the circles. The
disadvantage of not using the double circle drawing scheme is the need for displaying more arcs
than the double circle technique.

FBOX

2

node 7

node 6

node 5node 4

node 1 node 2 node 3

FBOX node 8

node 7

node 6node 5

node 1

2

node 2 node 3

3

node 4

1 21 3

3.2.3. or Gate

The or gate can have both incoming and outgoing connectors. The output is true if at least
one input is true. For example, if an input is a basic failure event, then the or gate output is a
failure event. The or gates are not labeled.

11



3.2.4. xor Gate

The xor gate can have both incoming and outgoing connectors. The output is true if an odd
number of inputs is true. The xor gates are not labeled.

3.2.5. not Gate

The not gate has one incoming and one outgoing connector. The output is false when the
input is true. The not gates are not labeled.

3.2.6. and Gate

The and gate can have both incoming and outgoing connectors. The output is true if all
inputs are true. For example, if all inputs are basic failure events, then the and gate output is
a failure event. Also, and gates are not labeled.

3.2.7. m/n Gate

The m/n gate can have both incoming and outgoing connectors. At leastm out of the n events
must occur in order for the output of the gate to occur. Both m and n must be speci�ed during
the labeling task.

3.2.8. Functional Dependency Gate

The functional dependency gate has one input (the trigger input), one or more dependent
outputs, and a normal output. The dependent outputs are basic events that depend on the
trigger event. When the trigger event occurs, the dependent basic events are forced to occur.
The normal output at the top of the gate reects the status of the trigger event. To connect a
line from another primitive to the trigger event, point to the area near the tip of the FDEP gate
stub to the left of the gate and click the left mouse button. In the PC version, the cursor is a plus
(+) sign. Aim the center of the cursor at the stub's end and do not allow any part of the cursor
to touch the box. Doing so directs the connection away from the stub. To connect the dependent
events, click the left mouse button when the cursor is inside the functional dependency node.
The ordering of the displayed dependent events is unimportant as the trigger event causes all
dependent events to occur.

3.2.9. Priority and Gate

The priority and gate has both incoming and outgoing connectors. It is essentially an and gate
with two inputs with the added restriction that the input events have to occur in order. If the
two inputs are A and B, then the gate �res if both A and B occur and A occurs before B. When
drawing the two input lines, draw the left one �rst then the right one. Only one line entering
the gate is shown on the screen; thus, it is important to get the order of input correct the �rst
time. Verifying the order is impossible after they are drawn. ASCII �les MODELNAME.FTR
or MODELNAME.TRE can be viewed for that information after quitting GO.

3.2.10. Cold Spare Gate

The cold spare gate has both incoming and outgoing connectors. It has one primary input
(the functional unit) and one or more secondary inputs (the cold spare units). The gate produces
an output when all input events (spare failures) have occurred. To connect the secondary inputs,
click the left mouse button on the line extending from the bottom of the node. To connect the

12



primary event, click the left mouse button when the cursor is inside the cold spare node (larger
rectangle). GO orders cold spare events based on the left-to-right order of the displayed nodes

(spare basic event circles) and NOT connections. Although �gure 3 in volume 1 of this Technical

Paper shows the incoming arcs as separate arcs, GO implemented the connections di�erently. A

separate arc is drawn for the primary unit, but only one arc is drawn for the spare units. Arcs

from the spare basic event circles will merge into one stub entering the cold spare gate primitive.

Since the arcs merge into one, distinguishing the order of the incoming arcs is visually impossible.

Thus, the order of the basic event circles and not the arcs is used to determine the order of the

spare event failures.

3.2.11. Sequence-Enforcing Gate

The sequence-enforcing gate has more than one input connector and an output connector.

The input events are constrained to occur in the left-to-right order in which they appear under

the gate; that is, the leftmost event must occur before the event on its immediate right is allowed

to occur. The GO program orders the input events based on the relative locations of the circles

representing basic events and not on the order of incoming connectors (see the cold spare gate

explanation for this scheme). For the sequencing-enforcing gate, all inputs merge into one stub

that enters the primitive.

3.2.12. Box

A box node represents a subsystem tree output (a subsystem failure event) and is labeled by

text describing the subsystem (not yet implemented in the graphics or HARP packages). Boxes

are usually placed at the outputs of gates to serve as comments.

3.2.13. Failure Box

The failure box node (FBOX) represents system failure. It must be the top node of the fault

tree. If it is omitted, a warning is displayed when you save the �le. The tdrive program will not

complete without this node present. Only one FBOX is allowed.

3.2.14. Line

The LINE function key connects two nodes (nonline primitives) in the fault tree. Lines must

be entered from the node lower in the tree to the higher one. A line cannot go between two

basic events; basic events can only be connected to other node types.

13



Chapter 4

FunctionKeys

4.1. HELP

Help prints out instructions on how to use the various function keys. To obtain information

on any function, �rst select the HELP key, and then select the function key designating the

desired information. (See �g. 6.) To exit the help session, use the QUIT function key. As an

example, suppose you want information on the GRID function key, then the COPY function,

and then you want to leave the HELP session. Perform the following steps:

1. Select the HELP key with the mouse

2. Select the GRID key with the mouse

3. Select the COPY key with the mouse

4. Select the QUIT key with the mouse

MESSAGES GO HERE

QUIT HELP SCALE

LABEL SAVE LOAD

DICT COPY VIEW

DRAW DEL GRID

ERASE REDRW MOVE

Fault tree
or

Markov chain
primitive menu

Figure 6. Selecting HELP from the menu.

If you accidently selected DRAW or DEL �rst to get help and you do not want to draw a

primitive, select REDRW to abort DRAW. Now select HELP then DRAW, etc.

14



4.2. LOAD

If a model had been previously created and saved, select LOAD function key to restore the

model on the screen. (See �g. 7.) If this is a new session and a new model is to be drawn, skip

this command and proceed to DRAW.

MESSAGES GO HERE

QUIT HELP SCALE

LABEL SAVE LOAD

DICT

FBOX

3*1 2*2

COPY VIEW

DRAW DEL GRID

ERASE REDRW MOVE

Fault tree
or

Markov chain
primitive menu

3*1 2*2

Figure 7. Selecting LOAD from the menu.

LOAD reads a model into the data structure and displays it on the screen. When prompted

for the model name, type in the name with or without the extension. (If used, the extension

must be .TRE for a fault tree or .MKV for a Markov chain.) If another model was already in

the data structure, you are given the option of returning to it or using the new model. Once

you decide, the model not selected is removed from the data structure.

4.3. DRAW

The DRAW function key allows you to create a model or modify an existing model that was

invoked by the LOAD command. (See �g. 8.) To draw primitives in your model (e.g., a circle),

�rst select the DRAW function key by clicking the left mouse button and then select the graphics

primitive function key (CIRCLE) with the mouse using the same technique as before. Notice

that both the DRAW function key and the CIRCLE key are highlighted. If they are not, you

probably did not select the DRAW key �rst.

Once the primitive has been chosen, simply move the cursor into the drawing window and

place the cursor where you want the primitive to appear and press the left mouse button. The

primitives are copied (not dragged) into the drawing area. To enter more of the same primitive,

move the cursor in the drawing area and press the left mouse button|you do not need to select

15



MESSAGES GO HERE

QUIT HELP SCALE

LABEL SAVE LOAD

DICT COPY VIEW

DRAW DEL GRID

c-clockwise

ERASE REDRW MOVE

clockwise

QUIT HELP SCALE

LABEL SAVE LOAD

DICT COPY VIEW

DRAW DEL GRID

ERASE REDRW MOVE

FBOX

Markov chain menu Fault tree menu

m/n

Figure 8. Selecting DRAWfrom the menu.

the primitive function key again. If you want to enter a di�erent primitive, simply move the
cursor over that graphics primitive function key and press the left mouse button (the DRAW
function key remains selected). Then repeat this process in the drawing window. Until you
select one of the other main function keys, you can add as many di�erent primitives to your
model as you like. If the DRAW function key is selected and you want to abort the selection
without selecting a primitive, select REDRW.

4.4. DICT

The DICT function key is used to enter the dictionary. (See vol. 1 of this TP for information
on the dictionary.) If the model type is a fault tree, the dictionary �le must be created. To
create the dictionary, �rst select the DICT function key. (See �g. 9.) You are prompted for the
component type name, its failure rate, and the FEHM �lename. Help is available by entering a
<CR> at the prompt. If the FEHM parameter �le does not exist, you can create one for any of
the allowed HARP FEHM's. The ARIES, CARE, and ESPN models are displayed graphically
as well.

If you make an error anywhere in the current component description, you can return to the
beginning of that component description by selecting Escape <CR> for the PC DOS version and
selecting n <CR> for the Sun and VAX VMS versions at any of the prompts. This action returns
you to the prompt for the component name. You cannot jump from one component description
to another. To change a previous description, the dictionary �le *.dic must be edited, or the
entire dictionary �le may be recreated. Once you have entered all the component information,

16



MESSAGES GO HERE

QUIT HELP SCALE

LABEL SAVE LOAD

DICT COPY VIEW

DRAW DEL GRID

ERASE REDRW MOVE

Fault tree
or

Markov chain
primitive menu

Figure 9. Selecting DICT from the menu.

type n, nd, or /d to terminate. If you have entered FEHM �lenames other than NONE or

VALUES, you are also asked about the user-de�ned near-coincident fault rates.

The deletion of a basic event node using the DEL function key doesn't remove its entry from

the dictionary. No matter how many basic events are deleted, adding another dictionary item

proceeds from the last one entered. This scheme precludes the renumbering of the labels as well

as the dictionary entries each time a basic event is deleted. Unused dictionary entries do not

cause any problems with the program.

4.5. LABEL

The LABEL function key is used to label the nodes, and if the model type is a Markov chain,

it is used to label the connectors. (See �g. 10.) You are �rst asked whether you want to change

existing labels or enter new labels. In either case, you are prompted for a label by a red X in or

on each graphics primitive in the drawing window. To move the red X from one node to the next

node without making any entries or changes, simply hit <CR>. A model must be saved before

it can be labeled. If you are labeling a fault tree, you are prompted for the dictionary entry

number. The prompt also allows you to enter a ? for help so that you can see the dictionary.

Enter n, nd, or /d to exit labeling, or enter c if you forgot to create a dictionary before entering

labeling. If you are labeling a Markov chain, you are prompted for the state name. Enter the

label on the keyboard, maximum of 13 characters, and press Enter or <CR>. You are then

prompted for the next one. When labeling, you are �rst asked for all the node labels, then the

connectors. To quit the labeling session before all the labels have been entered, type n, nd, or /d
then <CR>. When selecting change existing, if you do not want to change the red X, press

<CR> to select the next basic event for editing. Basic events must be displayed on the screen

17



MESSAGES GO HERE

QUIT HELP SCALE

LABEL SAVE LOAD

DICT

FBOX

3*1 2*2

COPY VIEW

DRAW DEL GRID

ERASE REDRW MOVE

Fault tree
or

Markov chain
primitive menu

3*1 2*2

Figure 10. Selecting LABEL from the menu.

to do labeling. Labeling details for each graphic primitive are found in their respective graphic

primitive description sections.

HARP places the following restrictions on rate parameters, which only a�ect the Markov

chain input:

1. Only one level of parentheses

2. Only addition and subtraction within parentheses

3. Only addition, subtraction, and multiplication outside parentheses

Greek symbols, new line markers, and subscripts must be entered with an escape code invoked

by the n key. To enter any Greek symbol, preface the Greek name with a n and also add a n su�x.

The way to enter � is

nlambdan

All Greek symbols are available in lowercase only. The symbols n- within the label signify a new

line. All characters entered following nS and before nU are written as subscripts.

In a Markov chain, two nodes having an identical label are considered to be the same state.

(This condition applies only if there are labels. However, to run the �face and harpeng programs,

the states must be labeled.)

4.6. SAVE

The SAVE function key allows you to write your model to a disk �le. (See �g. 11.) When

prompted for the model name, do not enter an extension. If the model type is a fault tree,

18



MESSAGES GO HERE

QUIT HELP SCALE

LABEL SAVE LOAD

DICT

FBOX

3*1 2*2

COPY VIEW

DRAW DEL GRID

ERASE REDRW MOVE

Fault tree
or

Markov chain
primitive menu

3*1 2*2

Figure 11. Selecting SAVE from the menu.

extensions of .TRE and .FTR are appended. For a fault tree, a *.FTR �le is created to be used
by tdrive. It is identical to the *.TRE �le unless double circle graphics primitives are used. (See
section 3.2.2 for details on this primitive.) If the type is a Markov chain, the extension .MKV
is appended. Be sure to save a labeled model before quitting a session. Your session will still
continue after saving the model.

4.7. QUIT

The QUIT function key is used to exit the current session. (See �g. 12.) After selecting
QUIT, a prompt appears that gives you a chance to change your selection and continue or to
really quit the session. Be sure to save your model before you quit because it is lost upon exiting.
If you enter Y to really quit, GKS is terminated and your screen returns to normal.

4.8. COPY

The COPY function key allows you to copy portions of your model from one part of the
screen to another. (See �g. 13.) Consider the area to be copied as a rectangle. After selecting
COPY, you are prompted for the lower left corner and the upper right corner of the area to be
copied. Using these two points, a box is drawn around the portion of the model to be copied
and the area within the box is copied to the location speci�ed. Only one drawing area screen
can be copied at a time. However, it can be copied to another screen segment; that is, you can
use the scroll keys to get to the location you want the model copied.

19



MESSAGES GO HERE

QUIT HELP SCALE

LABEL SAVE LOAD

DICT COPY VIEW

DRAW DEL GRID

ERASE REDRW MOVE

Fault tree
or

Markov chain
primitive menu

Figure 12. Selecting QUIT from the menu.

MESSAGES GO HERE

QUIT HELP SCALE

LABEL SAVE LOAD

DICT

FBOX

3*1 2*2

COPY VIEW

DRAW DEL GRID

ERASE REDRW MOVE

Fault tree
or

Markov chain
primitive menu

3*1 2*2

3*1 2*23*1 2*2

Figure 13. Selecting COPY fromthe menu.

20



MESSAGES GO HERE

QUIT HELP SCALE

LABEL SAVE LOAD

DICT COPY VIEW

DRAW DEL GRID

c-clockwise

ERASE REDRW MOVE

clockwise

QUIT HELP SCALE

LABEL SAVE LOAD

DICT COPY VIEW

DRAW DEL GRID

ERASE REDRW MOVE

FBOX

Markov chain menu Fault tree menu

m/n

Figure 14. Selecting DEL from the menu.

4.9. DEL

The DEL function key is used to remove primitives from your model. (See �g. 14.) To abort

a DEL selection prior to selecting a primitive, select REDRW. To delete a primitive from your

model, �rst select DEL and then select the graphics primitive in the menu.

Both the DEL function key and the graphics primitive function key should be highlighted. If

they are not, you probably did not select the DEL key �rst. Once the primitive has been chosen,

simply move the cursor into the drawing window and place the cursor within the primitive that

you want to delete, then press the left mouse button. To delete more of the same primitive,

move the cursor to the primitive in the drawing window and press the left mouse button|you do

not need to enable the primitive function key again. If you want to delete a di�erent primitive,

select the graphics primitive from the menu with the mouse (the DELETE function key remains

enabled), then repeat the process in the drawing window. Until you select one of the other

function keys, you can delete as many di�erent primitives in your model as you want. However,

with the exception of the circle and double circles, you cannot delete a node if there are any

connectors entering or leaving it. The connectors must �rst be removed. If a label is associated

with the node or connector, it is removed. You can delete circles or double circles like any other

primitive; however, you are warned that all connectors will also be deleted.

The deletion of a basic event node using the DEL function key doesn't remove its entry from

the dictionary. No matter how many basic events are deleted, adding another dictionary item

proceeds from the last one entered. This scheme precludes the renumbering of the labels as well

21



as the dictionary entries each time a basic event is deleted. Unused dictionary entries do not
cause any problems with the program.

4.10. ERASE

The ERASE function key not only erases the model on the screen but also destroys it in the

data structure. (See �g. 15.) Once this function is used, you cannot retrieve your model unless

it was previously saved on disk.

4.11. GRID

If you want a grid in the drawing window screen, use the GRID function key. (See �g. 16.) If

the grid is on, invoking the GRID function key turns the grid o�. Regardless of the grid being

visible or not, nodes in the model are drawn to the nearest half-grid location. The grid size is

�xed, and drawing in scaled mode is prohibited.

4.12. MOVE

The MOVE function key allows you to move any node in the model to another location. (See

�g. 17.) You are prompted for the node to move (place the cursor anywhere within the node

and press the left mouse button) and where to move it (specify the the location in the drawing

window with the cursor and press the left mouse button). Any connectors|both in and out of

the node|are altered to reect the new location of the node as well.

MESSAGES GO HERE

QUIT HELP SCALE

LABEL SAVE LOAD

DICT COPY VIEW

DRAW DEL

Fault tree
or

Markov chain
primitive menu

GRID

ERASE REDRW MOVE

Figure 15. Selecting ERASE from the menu.

4.13. REDRW

To redraw the model on the screen, use the REDRW function key. (See �g. 18.) All nodes,

connectors (arcs, arrows, or lines), and labels are redrawn. This function does not alter the data

22



3*1 2*2

MESSAGES GO HERE

QUIT HELP SCALE

LABEL SAVE LOAD

DICT COPY VIEW

DRAW DEL

Fault tree
or

Markov chain
primitive menu

GRID

ERASE REDRW MOVE

3*1 2*2

FBOX

Figure 16. Selecting GRID from the menu.

FBOX

3*1 2*23*1 2*2

MESSAGES GO HERE

QUIT HELP SCALE

LABEL SAVE LOAD

DICT COPY VIEW

DRAW DEL

Fault tree
or

Markov chain
primitive menu

GRID

ERASE REDRW MOVE

Figure 17. Selecting MOVE fromthe menu.

23



structure in any way. After an editing session, you may want to redraw your model because parts
of desired lines or symbols can be erased from the screen as other undesired ones are deleted.

4.14. SCALE

The SCALE function key is used to scale the model either bigger or smaller. (See �g. 19.)

You are prompted for a scaling factor that can be any real number greater than 0 and less than

or equal to 3.0. When using numbers greater than 1.0, you may not see anything on the screen

once it is redrawn because you have magni�ed the model such that it is no longer visible on the

screen. Scale the model again with a smaller value. If your model is currently scaled and you

use the COPY, MOVE, LABEL, DRAW, or DEL functions keys, the scale is changed to 1.0 and

the model is redrawn on the screen. Drawing in a scaled mode is prohibited.

4.15. VIEW

The VIEW function key is used to show the entire model in a small window in the lower
right corner of the drawing area. (See �g. 20.) The model is centered, scaled, and drawn in the

window. The portion of the model currently being displayed in the main drawing area window

is highlighted by a red box. If you have not created any portion of the model in more than one

drawing screen window (i.e., you have not used the SCROLL function keys and then created

more of the model), the VIEW function is not necessary.

FBOX

3*1 2*23*1 2*2

MESSAGES GO HERE

QUIT HELP SCALE

LABEL SAVE LOAD

DICT COPY VIEW

DRAW DEL

Fault tree
or

Markov chain
primitive menu

GRID

ERASE REDRW MOVE

Figure 18. Selecting REDRWfrom the menu.

When VIEW is selected, a prompt appears that gives you the option of viewing the entire

model or viewing dictionary information (component number, component name, and component

failure rate name) of a selected basic event in a fault tree. The dictionary information option is

24



FBOX

3*1 2*23*1 2*2

MESSAGES GO HERE

QUIT HELP SCALE

LABEL SAVE LOAD

DICT COPY VIEW

DRAW DEL

Fault tree
or

Markov chain
primitive menu

GRID

ERASE REDRW MOVE

Figure 19. Selecting SCALE from the menu.

FBOX

3*1 2*23*1 2*2

MESSAGES GO HERE

QUIT HELP SCALE

LABEL SAVE LOAD

DICT COPY VIEW

DRAW DEL

Fault tree
or

Markov chain
primitive menu

GRID

ERASE REDRW MOVE

Figure 20. Selecting VIEW from the menu.

25



selected by entering d <CR> at the prompt. Next, select with the mouse the node of interest.

The dictionary information appears in a highlighted box below the node. Click again to remove

the box. To use this option, the model must have a dictionary �le and must be labeled. To view

the entire model, enter m <CR> at the prompt.

26



Chapter 5

OutputFiles

Once you have saved the output from your graphics session, the information is stored in a
�le with the .TRE extension (if the FORM is a fault tree) or .MKV (if the FORM is a Markov
chain). In addition, for fault tree model, *.FTR (see chapter 5) and *.DIC �les are created, and
for a Markov chain model, a *.INT �le is created. For the following Markov chain, the output

*.MKV �le appears as follows:

N 100 200 16 3PROC

A 300 200 0 0 2 18 3*nLAMBDAn

N 300 200 16 2PROC

A 100 200 300 200 2 18 0

A 500 200 0 0 2 18 2*nLAMBDAn

N 500 200 16 F1

A 300 200 500 200 2 18 0

The lines beginning with an \N" represent nodes and those beginning with an \A" designate
arcs, arrows, or lines (connectors). The �elds for the nodes are as follows:

N xcoor ycoor type node node label

The (xcoor,ycoor) pair represents the location of the node on a 480-by-480 screen (PC version).
Although this coordinate scale is not used by the graphics implementation (it uses a 1.0-by-1.0
representation), the scale is easy to decipher in the �le. The node can be a circle if the FORM is a
Markov chain. If the FORM is a fault tree, the node can be a circle, or gate, and gate, m/n gate,
box, double circle, fbox, cold spare gate, functional dependency gate, sequence-enforcing gate,
priority and gate, xor gate, or not gate. The node label can be a maximum of 13 characters in
length. The �elds for the connectors are as follows:

A x1 y1 x2 y2 direc type connector next node rate paramter

A connector can either be an incoming or an outgoing connector. For an outgoing connector,
x2 and y2 are both 0. In this case, x1, y1 represents the location of the node at the head of the
connector. If the connector is an incoming one, x1, y1 represents the location of the node at the
tail of the connector. In this case, x2, y2 is the same as the node coordinates. This condition
ags it as an incoming connector. The integer direc speci�es the direction of the connector. For
arcs, a 1 signi�es an upward arc, 2 signi�es a downward arc, 4 signi�es an arc that curves toward
the right, and an 8 signi�es curves toward the left. Arcs that do not connect two nodes on the
horizontal or vertical have direction numbers of 5, 6, 9, and 10. Arrows have direction numbers

27



of 1 for a vertical line, 2 for a horizontal line, 4 for a positive slope line, and 8 for a negative
slope line. Lines in fault trees have a default direction number of 2.

The type connector can be a clockwise arc, arrow, or counterclockwise arc for a Markov

chain. For a fault tree, the only connector types are lines. The interpretations for the types

of node and types of connector numbers are as follows: circle, 16; or gate, 17; m/n gate, 18;

and gate, 19; xor gate, 24; cold spare gate, 25; not gate, 26; functional dependency gate, 29;

sequence-enforcing gate, 28; priority and gate, 27; box, 21; failure box, 22; double circle, 23;

clockwise arc, 17; arrow, 18, counterclockwise arc, 19; line, 20. As shown in the *.MKV �le, the

nodes are all circles and the connectors are all arrows.

In addition, a dictionary �le (*.DIC) can be created. It contains the name of each component

in the system, its failure rate, and any coverage information. The program tdrive, which converts

the fault tree to a Markov chain requires the total number of component types in the model

and the symbolic failure rate parameter for each. For this reason, the *.DIC �le must exist for

a fault tree model.

When the FORM is a fault tree, you must run the programs tdrive, �face, and harpeng (in

that order). For Markov chain input, only the programs �face and harpeng need be run. When

the FORM is a Markov chain, a *.INT �le is also output. This �le is declared to be SORTED or

UNSORTED and contains the list of transitions in the model and the rate parameter associated

with each transition. SORTED is the declaration only if the states names (node names) are

entered in an increasing integer order (meaning none are symbolic). If inputs are performed in

this manner, you should append the *X to all transitions going to the failure states. The �face

program normally appends *X when it sees transitions entering a state beginning with an F. For

a fault tree, a *.FTR �le is created to be used by tdrive. The �le is identical to the *.TRE �le

unless double circle graphics primitives are used. (See section 3.2.2 for details on this primitive.)

The programs of the HARP package|tdrive, �face, and harpeng|limit the size of the

model on the PC under the 16-bit DOS version but not under OS/2 or the 32-bit DOS

version. A maximum of 500 states1without truncation (6000 with level three truncation) and

4000 transitions (without truncation) are permitted on the PC. If more states or transitions are

created by the graphics program than can be accepted by the 16-bit version, you will need to

upload the graphics �les to your mini or mainframe computer and execute your model using an

unscaled version of HARP (non PC version). The 32-bit DOS version and the OS/2 version do

not have the state limitation, so the entire analysis can be performed on the PC.

NASALangley Research Center

Hampton, VA 23681-0001

August 8, 1994

1 Based on 512K of memory. More states are possible with more memory. (See vol. 1 of this TP.)

28



Appendix

HardwareandSoftwareCon�gurations

This appendix is provided as a guide for the proper hardware and software con�guration to

execute the Graphics Oriented (GO) program. The Graphical Kernal System (GKS) was selected

because it is the most portable graphics standard currently available. The GKS standard,

however, is not universally conformed to as are other standards. Consequently, some di�erences

in installation and operation are present. Substantial e�ort has been expended to minimize

the possible confusion that may result. Each computing platform installation requires some

knowledge of that system for proper installation.

Section A1 addresses IBM-compatible hardware and software requirements. Section A2

describes how to con�gure your PC to run the graphics program, section A3 describes how

to con�gure your Sun workstation, and section A4 describes how to con�gure your VAX

workstation. Section A5 discusses known bugs.

A1. PC Requirements

The GO graphics program was designed using the Graphic Software Systems Graphical Kernal

System (ref. 4) package and has been ported to an IBM-compatible 286, 386, and 486 computing

platforms.

An IBM PC AT compatible with the enhanced graphics adapter (EGA) display was used for

development. However, the video graphics adapter (VGA) display mode is currently supported.

A1.1. Hardware Requirements

Minimum hardware needed to run the program for the PC is as follows:

� 512K of memory

� Two disk drives with 360K capacity

� Graphics display device (EGA or VGA)

� Mouse

To enhance the performance:

� Fixed disk

� 1.2 or 1.4 MB oppy drives

� Math coprocessor

� VGA

A1.2. Software Requirements

To invoke the Markov chain primitive menus, the m parameter must be passed to pcgo.exe.

This action can be done with the batch �le gom.bat. Passing the f parameter or no parameter

(default case) invokes the fault tree primitive menus. The �le go.bat is used for this purpose.

For program execution, you need DOS version 2.1 or later. All other �les are provided.

Program development (not required for execution) requires the following:

29



� Graphics Software Systems Graphical Kernal System Development package (GSS*GKS
Version 2.02). This package includes GSS Computer Graphics Interface (GSS*CGI) and

device drivers.

� Microsoft C Compiler version 5.1

� MS-DOS Linker version 3.2

Reference 5 is an excellent reference on the GKS system.

A2. Con�guring the PC

Several �les are needed to run (execute) the graphics program. These �les are pcgo.exe, sr.z,

sg.z, aries.m, espn.m, care.m, go.bat, and gom.bat. The pcgo.exe �le is the actual executable

program, the *.z �les are the font �les, and the *.m �les are the FEHM graphics �les. The *.bat

�les are required to invoke the GKS drivers and the GO executable. The �le go.bat invokes the

fault tree capability, and gom.bat invokes the Markov chain capability. Other support required

�les are given in the following listing.

To run the program correctly with GKS, you need the following lines added to your

AUTOEXEC.BAT �le. (No changes are required for your CONFIG.SYS �le.)

SET CGIPATH = C:nCGI

C:nCGInDRIVERS.EXE

You need to make a CGI subdirectory that contains all necessary GKS support code:

CGI.CFG Contains driver spec., device names, & environ. vars.

KERNEL.SYS Contains workstation configuration

DRIVERS.EXE GKS driver

IBMEGA.SYS Display driver

MSMOUSE.SYS Mouse driver

GSSCGI.SYS GSSCGI driver

IBMVGA12.SYS VGA driver (optional in lieu of IBMEGA.SYS)

META.SYS Meta driver for interfacing with I/O devices (optional)

FONT101.TBL GKS font files

FONT102.TBL

.

.

.

FONT106.TBL

To change devices or drivers, the user needs to edit the CGI.CFG �le with a common ASCII

editor. Upgrading from an EGA to a VGA display or adding a hardcopy output capability are

such examples. KERNELOB.SYS can also be edited when workstation parameters change.

To help you con�gure your PC, the following example CONFIG.SYS and AUTOEXEC.BAT

�les are given.

30



CONFIG.SYS file contents and comments

files=20 The max. number of files allowed open

buffers=15 The max. number of buffers

break on Allows ^C to terminate process

shell=c:ncommand.com OS is on drive c:n

REM Include your normal statements

AUTOEXEC.BAT

echo off

verify on

set comspec=c:ncommand.com

REM Run GSS*GKS Device Driver Management Utility to initialize

REM the system and to install the Transient Drivers

REM

SET CGIPATH = C:nCGI

C:nCGInDRIVERS.EXE

REM Include your normal path

path

cls

The following is a list of �les included in PC GO. The *.z, *.m, go.bat, and gom.bat �les are

needed at run time with pcgo.exe. The �le go.bat invokes the GKS drivers for fault tree entry,

and gom.bat is used for Markov chain entry. The other �les are used for development. Please

read the read.me �le.

adraw.c arclab.c carcs.c cdisp.c gssgo.c

gssinit.c cmd prim.c coorarc.c copygr.c dict.c

drwprims.c video.c fhmfils.c filein.c fileout.c

formats.c gendrw.c glcent.c greek.c redraw.c

help.c label.c matrix.c mouse.c movepl.c

petri.c snap.c space.c str.c trans.c

upkeep.c viewport.c wrlab.c aries.m espn.m

stiff.m sg.z sr.z defvar dos.h

defs.h devices.h fonts.h gdefines.h memngt.h

menu.h shapes.h typedef.h vars.h vec.h

linkit.bat lnfil makefile makeit.bat go.bat

gom.bat pcgo.exe read.me list

31



A3. Con�guring the SUNWorkstation

The HARP graphics program was designed to work with Sun GKS 4.1 under OpenWindows.

To execute the HARP graphics program, perform the following steps:

� Type /usr/openwin/bin/openwin at the prompt to place yourself in the openwin environment

� The setenv GKSHOME path of the GKS library �les and OPENWINHOME = usr/openwin

must be in your .cshrc �le. For example, setenv GKSHOME /usr/gks4.1

� Make sure your Sun workstation has the following libraries:

%cc -Bstatic -g -I$GKSHOME/include/gks -I$OPENWINHOME/include foo.c -o foo

-L$OPENWINHOME/lib -L$GKSHOME/lib -lgks -lxview -lolgx -lX11 -lm

(Note: ``-g'' is required only for dbxtool, the source code debugging tool.)

� The GKS libraries are supplied with the executable and source �les.

� The following �les must be found in a directory:

adraw.c arclab.c aries.m carcs.c cmd prim.c

coorarc.c copygr.c defs.h defvar dev.h

dict.c drwprims.c espn.m fhmfils.c filein.c

fileout.c formats.c gendrw.c glcent.c gssgo.c

gssinit.c help.c label.c matrix.c memngt.h

menu.h mouse.c movepl.c node defs.h petri.c

place label.c redraw.c shapes.h space.c stiff.m

str.c trans.c upkeep.c vars.h viewport.c

wrlab.c read.me list

� In addition to the previous �les, Make�le is needed to compile and link the HARP programs.

� To compile and link the HARP programs, type make.

� After typing make, an executable �le named go should appear along with the object modules

for the source codes.

A4. Con�guring the VAXWorkstation

The HARP graphics program was designed to work with DEC GKS version 4.0 with

the C language binding and VMS 4.7 or higher. It has successfully been tested using the

VAXstation II windowing software version 3.1 or higher and DEC windows version 1.0. If you

are using DEC Windows, be sure to de�ne logical names for the devices.

Example: define gks$wstype 211

define gks$conid wsa0

These lines can be included in your login.com �le. To execute the HARP graphics program,

perform the following steps:

� Set up foreign command $go := $full path name harp.exe in your login.com �le. For example,

$go := $vax1$dub0:[jane.harp]harp.exe

32



� The following �les must be found in a directory:

adraw.c arclab.c aries.m carcs.c cmd prim.c

coorarc.c copygr.c defs.h defvar dev.h

dict.c drwprims.c espn.m fhmfils.c filein.c

fileout.c formats.c gendrw.c glcent.c gssgo.c

gssinit.c help.c label.c matrix.c memngt.h

menu.h mouse.c movepl.c node defs.h petri.c

place label.c redraw.c shapes.h space.c stiff.m

str.c trans.c upkeep.c vars.h vec.h

viewport.c where gks.h wrlab.c

� In addition to the previous �les, compile harp.com and link harp.com procedure �les have
been included. To execute these procedures, type @compile harp followed by @link harp.

� After executing these two procedure �les, an executable �le entitled harp.exe should appear.
To execute harp type go.

During certain portions of the interactive session, a string input window will appear on
the screen to request input. If this window should ever impair viewing important graphic
information, click the left button of the mouse on the upper right corner of the string window
to display a menu. This menu lets you shrink the window to an icon or push the window behind
the graphics display. To continue, bring back the string window for response.

A5. Known Bugs and Suggested Improvements

Although all versions of the GO program were translations of the original PC version,
the versions di�er as a result of di�erences in their GKS implementations. Even though the
developers made every attempt to maintain a common source code for all computing platforms,
the di�erent implementations precluded that aim (ref. 1). Consequently, each computing
platform version of GO has its unique bugs. In delineating the known bugs, the GO version is
identi�ed, when possible. For the Sun workstation, the priority and gate accepts more than two
inputs.

33



References

1. Bavuso, Salvatore J.; Koppen, Sandra V.; and Haley, Pamela J.: Graphical Workstation Capability for Reliability

Modeling. NASA TM-4317, 1992.

2. Geist, Robert; Trivedi, Kishor; Dugan, Joanne Bechta; and Smotherman, Mark: Design of the Hybrid

AutomatedReliabilityPredictor. Proceedings of the IEEE/AIAA5thDigital Avionics Systems Conference, 1983,

pp. 16.5.1{16.5.8.

3. Bavuso, Salvatore J.; and Dugan, Joanne B.: HiRel|Reliability/Availability Integrated Workstation Tool.

Proceedings of the Annual Reliability and Maintainability Symposium, IEEE, Jan. 1992, pp. 491{500.

4. McKay, Lucia: GKS Primer. Nova Graphics International Corp., 1984.

5. Sproull, RobertF.; Sutherland,W. R.; andUllner, Michael K.: Device-Independent Graphics. McGraw-Hill Book

Co., 1985.

34



&%
'$
3PROC &%

'$
2PROC &%

'$
F1

- -
3*� 2*�

1



REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Je�erson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the O�ce of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

November 1994 Technical Paper

4. TITLE AND SUBTITLE

HiRel: Hybrid Automated Reliability Predictor (HARP)
Integrated Reliability Tool System (Version 7.0)
HARP Graphics Oriented (GO) Input User's Guide

6. AUTHOR(S)

Salvatore J. Bavuso, Elizabeth Rothmann, Nitin Mittal,
and Sandra Howell Koppen

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

5. FUNDING NUMBERS

WU 505-66-21-02

8. PERFORMING ORGANIZATION

REPORT NUMBER

L-16553C

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA TP-3452, Vol. 3

11. SUPPLEMENTARY NOTES

Bavuso: Langley Research Center, Hampton, VA; Rothmann and Mittal: Duke University, Durham, NC;
Koppen: Lockheed Engineering & Sciences Company, Hampton, VA.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassi�ed{Unlimited

Subject Category 61

13. ABSTRACT (Maximum 200 words)

The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for
reliability/availability prediction o�ers a toolbox of integrated reliability/availability programs that can be
used to customize the user's application in a workstation or nonworkstation environment. HiRel consists of
interactive graphical input/output programs and four reliability/availability modeling engines that provide
analytical and simulative solutions to a wide host of highly reliable fault-tolerant system architectures and is
also applicable to electronic systems in general. The tool system was designed at the outset to be compatible
with most computing platforms and operating systems, and some programs have been beta tested within the
aerospace community for over 8 years. This document is a user's guide for the HiRel graphical preprocessor
Graphics Oriented (GO) program. GO is a graphical user interface for the HARP engine that enables the
drawing of reliability/availability models on a monitor. A mouse is used to select fault tree gates or Markov
graphical symbols from a menu for drawing.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Reliability; Availability; Fault tree; Markov chain; Coverage; Faults; Errors;
Fault tolerant; Graphical user interface (GUI)

37
16. PRICE CODE

A03
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION

OF REPORT OF THIS PAGE OF ABSTRACT OF ABSTRACT

Unclassi�ed Unclassi�ed Unclassi�ed

NSN 7540-01-280-5500 Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102


